library(ripe)

replicate

stats::runif(20)%>%
  ripe(replicate,n=2,simplify=FALSE)
#> [[1]]
#>  [1] 0.88953932 0.69280341 0.64050681 0.99426978 0.65570580 0.70853047
#>  [7] 0.54406602 0.59414202 0.28915974 0.14711365 0.96302423 0.90229905
#> [13] 0.69070528 0.79546742 0.02461368 0.47779597 0.75845954 0.21640794
#> [19] 0.31818101 0.23162579
#> 
#> [[2]]
#>  [1] 0.14280002 0.41454634 0.41372433 0.36884545 0.15244475 0.13880606
#>  [7] 0.23303410 0.46596245 0.26597264 0.85782772 0.04583117 0.44220007
#> [13] 0.79892485 0.12189926 0.56094798 0.20653139 0.12753165 0.75330786
#> [19] 0.89504536 0.37446278

stats::runif(20)%>%
  sample(10)%>%
  ripe(replicate,n=3,simplify=FALSE)
#> [[1]]
#>  [1] 0.60873498 0.78229430 0.94772694 0.59998896 0.06072057 0.93529980
#>  [7] 0.51150546 0.95447383 0.46677904 0.89035022
#> 
#> [[2]]
#>  [1] 0.24572368 0.84272932 0.23909996 0.31170220 0.82180546 0.01046711
#>  [7] 0.23116178 0.43943154 0.65983845 0.18384952
#> 
#> [[3]]
#>  [1] 0.6180179 0.7465680 0.4127461 0.7082903 0.5817501 0.2656867 0.6682846
#>  [8] 0.6299731 0.4812898 0.2650178

stats::runif(20)%>%
  sample(10)%>%
  utils::head(5)%>%
  ripe(replicate,n=4,simplify=FALSE)
#> [[1]]
#> [1] 0.1716985 0.5468262 0.5930457 0.6330554 0.6623176
#> 
#> [[2]]
#> [1] 0.97187564 0.22588643 0.07205712 0.13710608 0.05795856
#> 
#> [[3]]
#> [1] 0.1566369 0.6301319 0.8028123 0.7790659 0.7293907
#> 
#> [[4]]
#> [1] 0.5260297 0.1194048 0.5150718 0.9674695 0.4925665

apply

stats::runif(20)%>%
  sample(10)%>%
  utils::head(5)%>%
  ripe(lapply, X=1:4)
#> [[1]]
#> [1] 0.32172554 0.08250275 0.59626354 0.62625695 0.02799257
#> 
#> [[2]]
#> [1] 0.2366197 0.7603995 0.7085741 0.3580570 0.1611658
#> 
#> [[3]]
#> [1] 0.11577966 0.21516649 0.09391661 0.67822386 0.68774269
#> 
#> [[4]]
#> [1] 0.7358994 0.4547616 0.7702048 0.3956606 0.5039487

mclapply

(ncores <- parallel::detectCores())
#> [1] 4
stats::runif(20)%>%
  sample(10)%>%
  utils::head(5)%>%
  ripe(parallel::mclapply, X=1:4, mc.cores = pmin(1,ncores-1))
#> [[1]]
#> [1] 0.87394991 0.15133817 0.01836408 0.94958532 0.41330541
#> 
#> [[2]]
#> [1] 0.02199372 0.04210805 0.99304478 0.78182307 0.62974542
#> 
#> [[3]]
#> [1] 0.5029083 0.6145622 0.9091465 0.7456362 0.4757505
#> 
#> [[4]]
#> [1] 0.4204349 0.5395609 0.7337478 0.5223358 0.7147548

purrr

iris %>% 
  dplyr::sample_n(5) %>% 
  ripe(purrr::rerun,.n=3)
#> [[1]]
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
#> 1          5.2         2.7          3.9         1.4 versicolor
#> 2          5.4         3.9          1.3         0.4     setosa
#> 3          4.6         3.6          1.0         0.2     setosa
#> 4          5.1         3.8          1.9         0.4     setosa
#> 5          7.7         3.0          6.1         2.3  virginica
#> 
#> [[2]]
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
#> 1          6.0         2.9          4.5         1.5 versicolor
#> 2          5.6         3.0          4.5         1.5 versicolor
#> 3          4.4         3.0          1.3         0.2     setosa
#> 4          5.2         3.5          1.5         0.2     setosa
#> 5          6.7         3.1          4.7         1.5 versicolor
#> 
#> [[3]]
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
#> 1          5.8         2.7          5.1         1.9 virginica
#> 2          6.4         3.1          5.5         1.8 virginica
#> 3          6.7         2.5          5.8         1.8 virginica
#> 4          5.9         3.0          5.1         1.8 virginica
#> 5          5.0         3.5          1.3         0.3    setosa

iris %>% 
  dplyr::select(1:2) %>% 
  dplyr::sample_n(20) %>% 
  ripe(purrr::rerun,.n=1)
#> [[1]]
#>    Sepal.Length Sepal.Width
#> 1           5.1         3.8
#> 2           6.6         3.0
#> 3           4.8         3.4
#> 4           5.5         2.6
#> 5           6.7         3.1
#> 6           6.4         3.1
#> 7           5.0         2.3
#> 8           6.2         2.8
#> 9           4.8         3.4
#> 10          5.0         3.4
#> 11          5.9         3.2
#> 12          5.8         4.0
#> 13          5.8         2.7
#> 14          6.7         3.1
#> 15          5.6         2.8
#> 16          6.3         2.8
#> 17          6.9         3.1
#> 18          4.6         3.1
#> 19          5.5         2.4
#> 20          6.7         3.0

iris %>% 
  dplyr::select(1:2)%>% 
  dplyr::sample_n(20) %>% 
  dplyr::slice(1:5) %>%
  ripe(purrr::rerun,.n=3)
#> [[1]]
#>   Sepal.Length Sepal.Width
#> 1          5.3         3.7
#> 2          5.4         3.0
#> 3          6.2         2.2
#> 4          6.1         2.9
#> 5          6.6         3.0
#> 
#> [[2]]
#>   Sepal.Length Sepal.Width
#> 1          7.3         2.9
#> 2          5.6         3.0
#> 3          5.0         3.2
#> 4          7.4         2.8
#> 5          4.6         3.4
#> 
#> [[3]]
#>   Sepal.Length Sepal.Width
#> 1          4.8         3.1
#> 2          6.1         2.8
#> 3          6.6         2.9
#> 4          5.1         3.3
#> 5          4.9         3.1