R/geom_ash.r
stat_ash.Rd
stat_ash(mapping = NULL, data = NULL, geom = "area", position = "stack", ab = NULL, nbin = 50, m = 5, kopt = c(2, 2), na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...)
mapping | Set of aesthetic mappings created by |
---|---|
data | The data to be displayed in this layer. There are three options: If A A |
geom | Use to override the default Geom |
position | Position adjustment, either as a string, or the result of a call to a position adjustment function. |
ab | half-open interval for bins [a,b). If no value is specified,
the range of x is stretched by |
nbin | number of bins desired. Default |
m | integer smoothing parameter; Default |
kopt | vector of length 2 specifying the kernel, which is proportional to ( 1 - abs(i/m)^kopt(1) )i^kopt(2); (2,2)=biweight (default); (0,0)=uniform; (1,0)=triangle; (2,1)=Epanechnikov; (2,3)=triweight. |
na.rm | If |
show.legend | logical. Should this layer be included in the legends?
|
inherit.aes | If |
... | Other arguments passed on to |
A sample of the output from stat_ash()
:
geom_ash
understands the following aesthetics (required aesthetics
are in bold):
x
alpha
color
fill
linetype
size
density
ash density estimate
David Scott (1992), "Multivariate Density Estimation,"
John Wiley, (chapter 5 in particular).
B. W. Silverman (1986), "Density Estimation for Statistics
and Data Analysis," Chapman & Hall.
# compare library(gridExtra) set.seed(1492) dat <- data.frame(x=rnorm(100)) grid.arrange(ggplot(dat, aes(x)) + stat_ash(), ggplot(dat, aes(x)) + stat_bkde(), ggplot(dat, aes(x)) + stat_density(), nrow=3)#>#>cols <- RColorBrewer::brewer.pal(3, "Dark2") ggplot(dat, aes(x)) + stat_ash(alpha=1/2, fill=cols[3]) + stat_bkde(alpha=1/2, fill=cols[2]) + stat_density(alpha=1/2, fill=cols[1]) + geom_rug() + labs(x=NULL, y="density/estimate") + scale_x_continuous(expand=c(0,0)) + theme_bw() + theme(panel.grid=element_blank()) + theme(panel.border=element_blank())#>#>